Requirement for Technology Transfer and Adaptation Prioritization

Lin Erda, Prof. & Dr. Ju Hui IESD, Chinese Academy of Agricultural Sciences

Contents

- Adapting to changes that cannot be prevented
- Big Gap of Demand and Supply
- Getting Beyond Funding to Action
- Expected Results

adapting to changes that cannot be prevented

- After many years in which adaptation was considered mainly a political distraction from the need to reduce greenhouse gas emissions, the global community has begun to take the issue seriously
- With a collective failure to date to halt greenhouse gas emissions, the world now must face the task of adapting to changes that cannot be prevented.

Adaptation will be urgent if post 2012 target is still less than expected

St a Sc.	CO2	CO2 –e	CO2 emission peak	Global CO2 Emission changes by 2050 (% of 2000 Emission)	Global Temp. changes vs pre- indus.	Annext I Need a large amount of Emission reduction
	ppm	ppm	year	%	°C	%
I	350 –400	445 – 490	2000 -2015	-85 to -50	2.0 – 2.4	-90 more
II	400 –440	490 – 535	2000 -2020	-60 to -30	2.4 – 2.8	-80 to -60
III	440 –485	535 – 590	2010 -2030	-30 to +5	2.8 – 3.2	-80 to -60
IV	485 –570	590 – 710	2020 -2060	+10 to +60	3.2 – 4.0	-60 to -40
V	570 –660	710 – 855	2050 -2080	+25 to +85	4.0 – 4.9	-60 to -40
VI	660 –790	855 – 1130	2060 -2090	+90 to +140	4.9 – 6.1	< -40

Big Gap of Demand and Supply

The United Nations Development Program's Human Development Report 2007/2008 estimates the cost of adaptation in developing countries will reach \$86 billion per year by 2015. In contrast, current international funds dedicated to adaptation amount to less than \$1 billion total.

Getting Beyond Funding to Action

- Debates about the additionality of funding, the scale of the funding need, and appropriate operating principles for financing mechanisms have slowed the generation of adaptation funding and limited effective action.
- Approaches to categorizing, prioritizing, technology listing and assessing the effectiveness of adaptation investments may be needed if funding for adaptation action is to continue to grow.

What we need

- Concrete technology needs and technology be able provided, priorities and evaluative criteria can help reassure international funders, and can provide guidance to practitioners and policy-makers at the national level.
- Evaluation itself will need to adapt as adaptation needs become better understood, those responsible for evaluation will need a mechanism through which to learn, share experience, and identify emerging best practices.

How to act

- launch a global dialogue on increase the funding, technology transfer and priorities for use of adaptation funding;
- build a community of practice through which researchers, evaluators and decision-makers can develop and test options for monitoring and evaluation of adaptation technology transfer; and
- explore the utility of tools for prioritization and evaluation in a range of policy arenas.

Expected Results

- prioritization framework and assessment criteria for adaptation technology transfer
- Key international funders use them
- The post-2012 United Nations climate agreement draws upon them in creating a mechanism
- The framework and criteria form the basis for the development of more location- and sector-specific planning tools and policy models.
- The community of practice fosters effective action by capturing and sharing experience in implementing and evaluating adaptation.

Framework for Multi-Criteria Analysis for Adaptation Options

Criteria and Indicator	Rating			
Win-win options Does option address current climate variability and future climate change?	1 = uncertainty 2= based only current 3= Both current and short term (3-5yeas) 4 = medium to long-term (more than 5 years)			
Existing risk management Is the option consistent with existing risk management activities?	1= No 2= consistence in short term (extreme event) 3= consistent in long term (average change) 4= both short and long term			
Cost effectiveness Can costs and benefits of option be easily determined?	1= very difficult 2= difficult 3= easy 4= very easy			
Adaptive flexibility Does the option focus on narrow range of future scenarios, or allow flexibility of response?	1= no, irreversible 2= limit flexible 3= flexible 4= very flexible and easy			
Unintended impacts Potential negative spin-off impacts beyond targeted activity?	1=Adverse impact 2= uncertain 3= no impacts 4= benefit impact			
Practical considerations Is the option practical and feasible for implementer?	1 = unfeasible, impossible 2=More problematic 3= Relatively simple 4= more easily			
Knowledge level How certain we are in predicting a particular change in hazard and its impact?	1= uncertainty 2= low certainty 3= medium certainty 4= High certainty			
Policy Coherence Does option reflect local and national DRR / adaptation plans or studies?	1=only long-term or only medium term need 2=long and medium term need 3= short term need 4= both above all			
TOTAL	?/32			

Adaptation Trials in China

Site	Ningxia poor farming ? ?	Forest mana. of W. Sichuan ??	Prev. of schistosom iasis in N. Jiangsu?	Recov. of Extrame E.in C Q???	Recov. Of Taifeng in GuangDon g ? ?	Yellow river source in md QH? ?
Observ. Impact ??? ??	Dry with drought stress	Changes of diseases and pests	Temp and human disease	Extreme events	Changes of Taifeng: num.landi ng, inten	dryer? degenera ted grasslan
Future Risk? ???	Big gap of wat dem & supply	Forest fire aggravate d	Epidemic area exten north	Disaster frequency increased	Serious impacts of Taifeng	Serious degenera tion
Adaptat ion??	Water saving, diversity of livelihood	Monitoring and pre- warning	Colligated measures	forecast? meet emergenc y	pre- warning and cross action	De- pasture &recover grass
Impr. of asses ???	Integrated assessmen t	Recover degenerat ed forests	Monitor of temp and epidemic s.	Relation of disa. & CC	Relation of TF. & CC	Climate and grass

Looking forward the further cooperation for Adaptation